

Heap Sort

Kuan-Yu Chen (陳冠宇)

2019/03/20 @ TR-310-1, NTUST

Review

- Maximum-subarray Problem
 - The brute-force solution takes $\Omega(n^2)$ time
 - A transformation approach takes $\Theta(n^2)$ time
 - The divide-and-conquer method takes $\Theta(n \log_2 n)$ time
 - Faster than the brute-force method
- Matrix Multiplication
 - The brute-force solution takes $\Theta(n^3)$ time
 - The divide-and-conquer method takes $\Theta(n^3)$ time
 - Strassen's method takes $\Theta(n^{\log_2 7})$ time

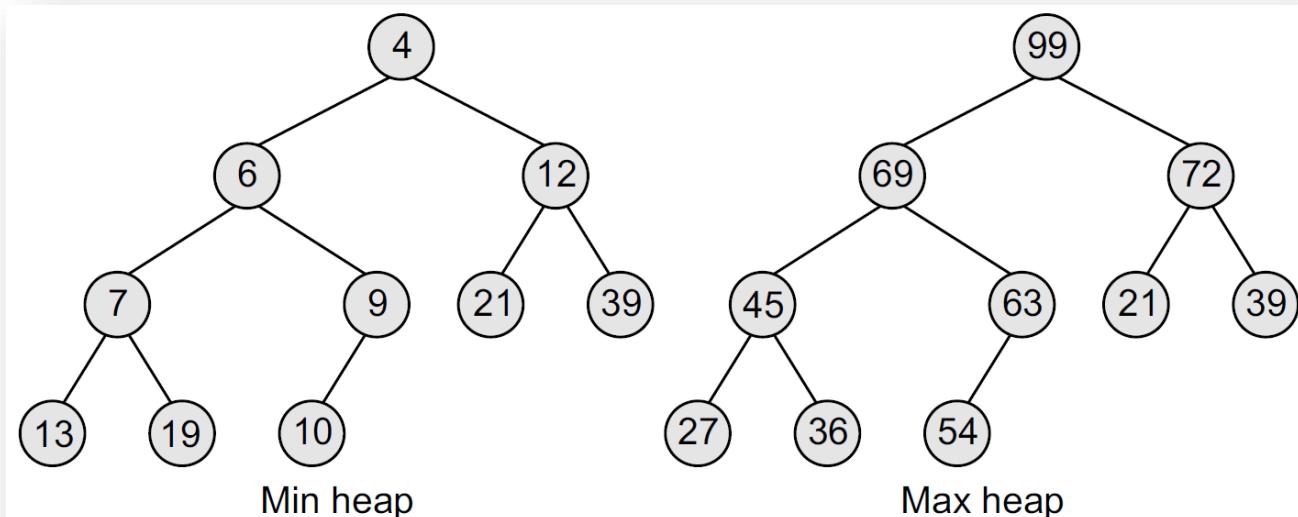
Binary Heap

- A **binary heap** is a complete binary tree in which every node satisfies the heap property
 - Min Heap

If B is a child of A, then $\text{key}(B) \geq \text{key}(A)$

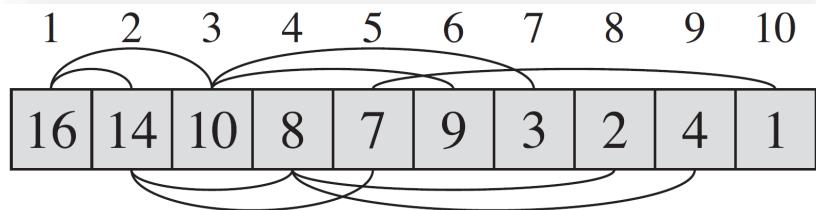
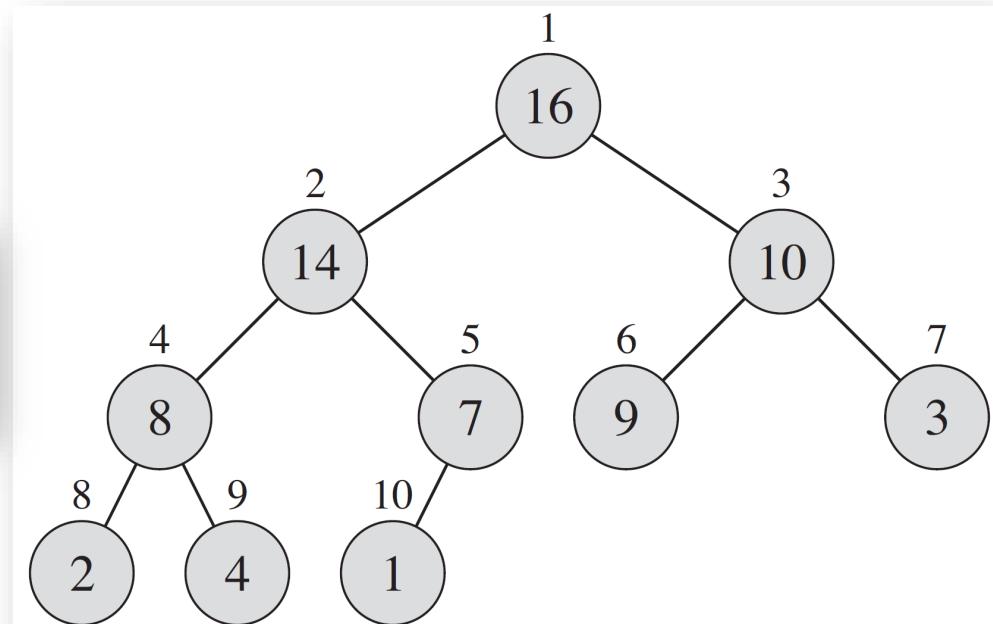
- Max Heap

If B is a child of A, then $\text{key}(A) \geq \text{key}(B)$



Binary Heap

- Given the index i of a node, we can easily compute the indices of its parent, left child, and right child
 - Take max-heap for example
 - For a node in the max-heap with index i
 - Its parent is $\left\lfloor \frac{i}{2} \right\rfloor$
 - Its left child is $2i$
 - Its right child is $2i + 1$

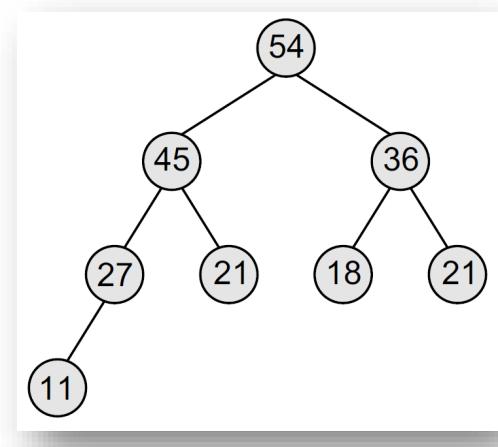
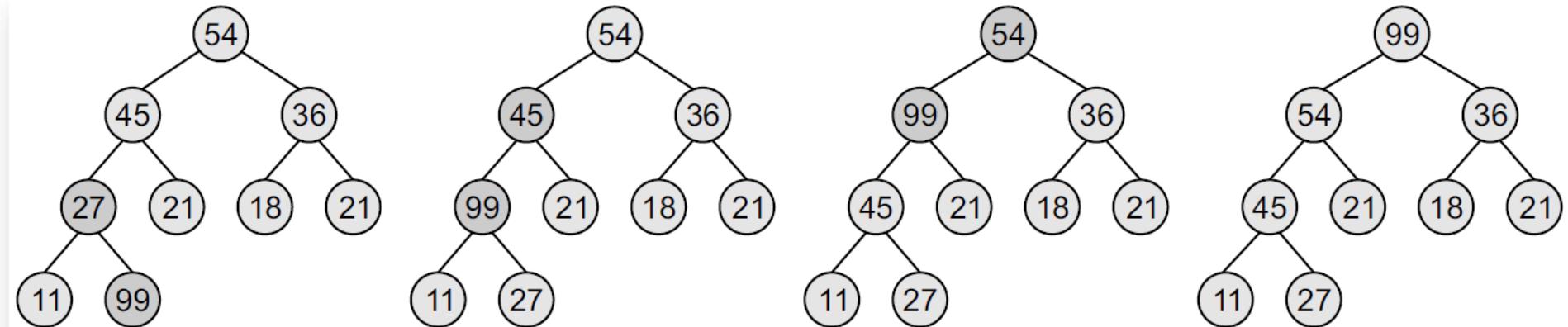


Heap – Insertion

- Inserting a new value into the heap is done in the following two steps:
 - Consider a max heap H with n elements
 1. Add the new value at the bottom of H
 2. Let the new value rise to its appropriate place in H

Example

- Consider a max heap and insert 99 in it

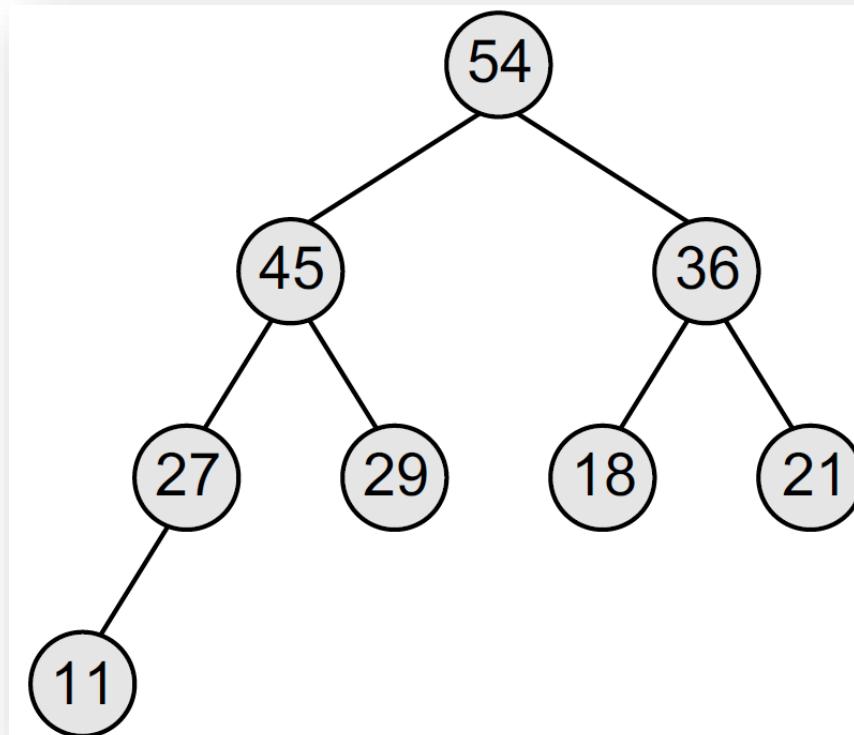


Heap – Deletion

- An element is always deleted from the root of the heap
- Consider a max heap H having n elements, deleting an element from the heap is done in the following three steps:
 1. Replace the root node's value with the last node's value
 2. Delete the last node
 3. Sink down the new root node's value so that H satisfies the heap property

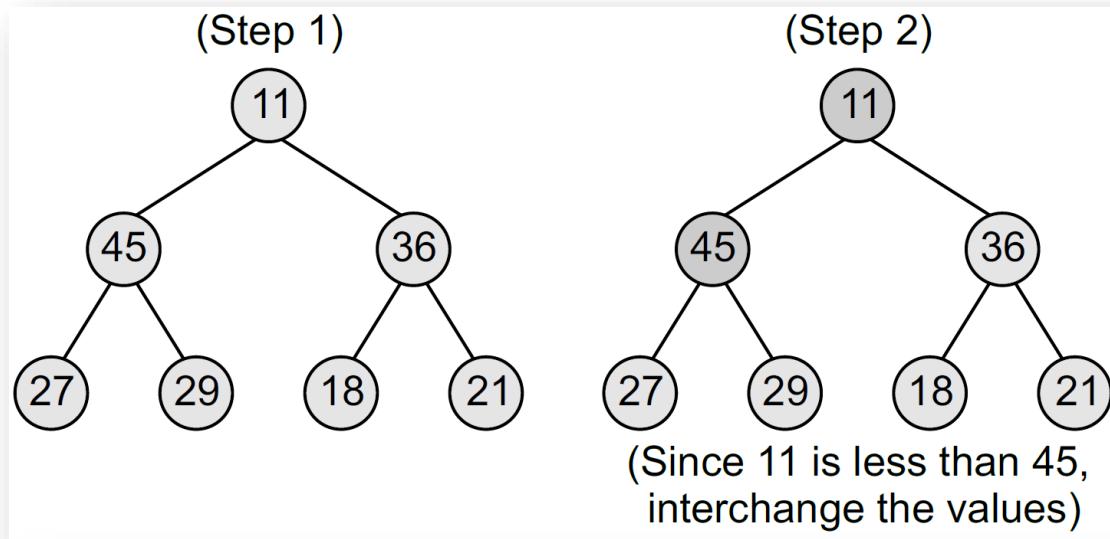
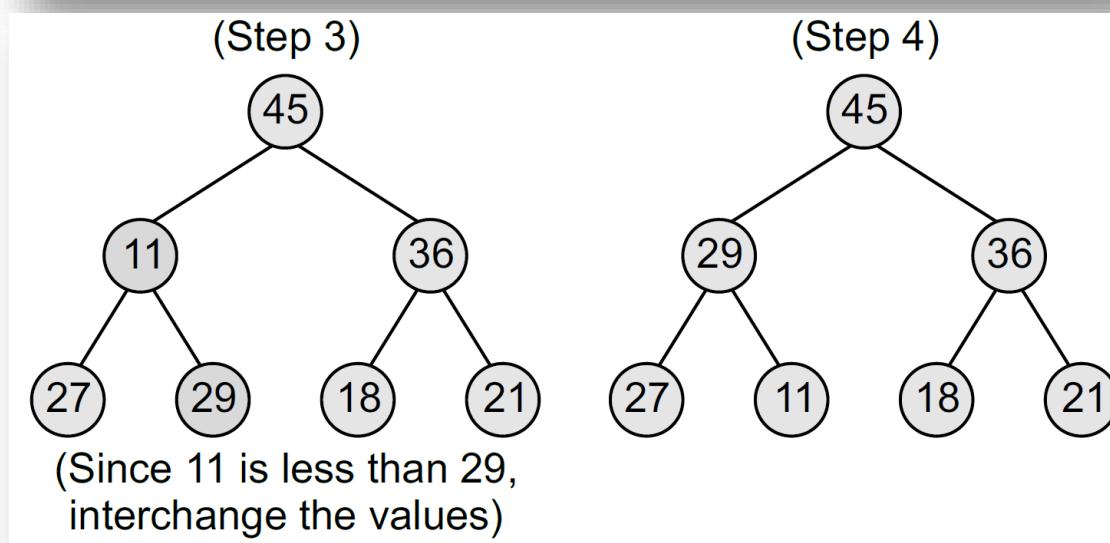
Example.

- Delete the root node's value from a given max heap H



Example..

- Delete the root node's value from a given max heap H

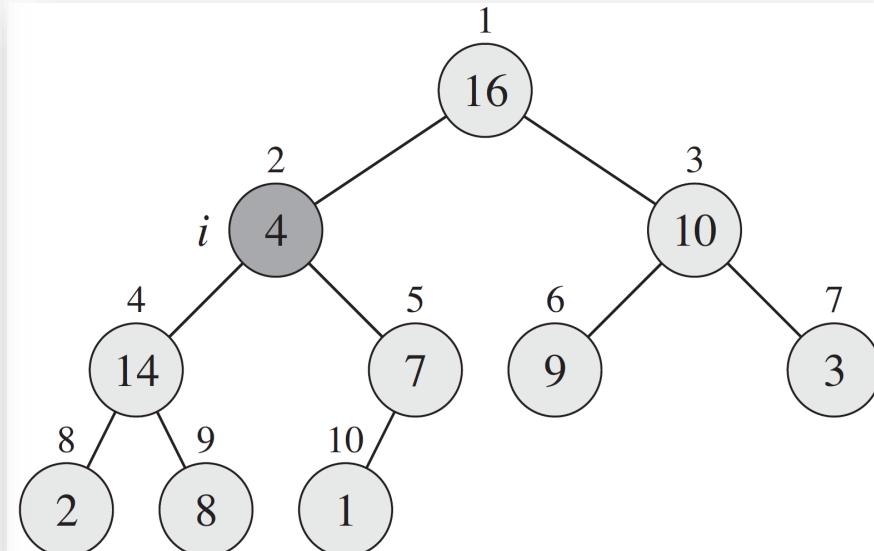


Max-Heapify.

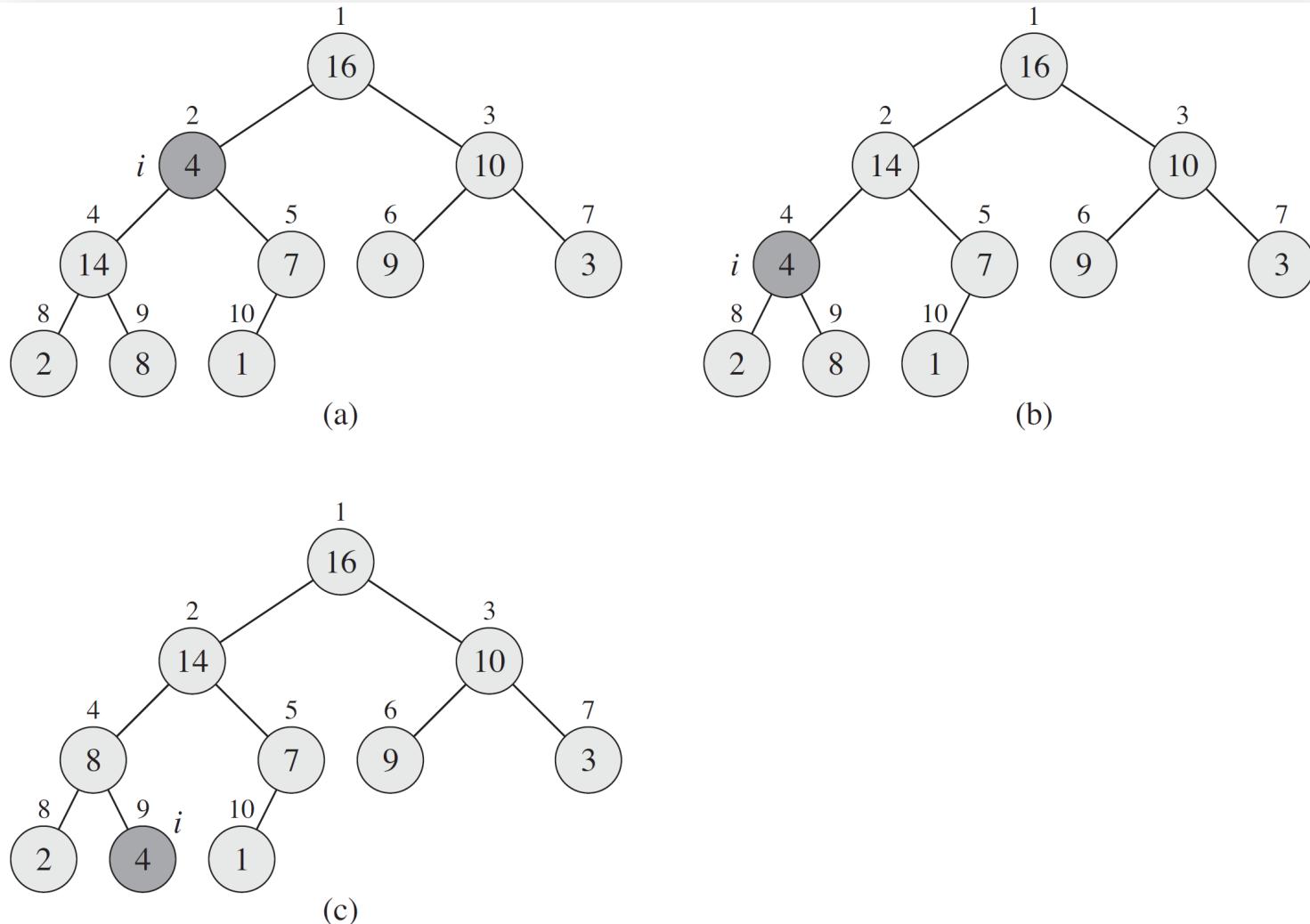
- In order to maintain the max-heap property, we call the procedure MAX-HEAPIFY
 - Its inputs are an array A and an index i into the array
 - The node $A[i]$ has two children $LEFT(i)$ and $RIGHT(i)$
 - If $A[i]$ is smaller than its children, the procedure can make it correct

MAX-HEAPIFY(A, i)

```
1   $l = \text{LEFT}(i)$ 
2   $r = \text{RIGHT}(i)$ 
3  if  $l \leq A.\text{heap-size}$  and  $A[l] > A[i]$ 
4       $largest = l$ 
5  else  $largest = i$ 
6  if  $r \leq A.\text{heap-size}$  and  $A[r] > A[largest]$ 
7       $largest = r$ 
8  if  $largest \neq i$ 
9      exchange  $A[i]$  with  $A[largest]$ 
10     MAX-HEAPIFY( $A, largest$ )
```



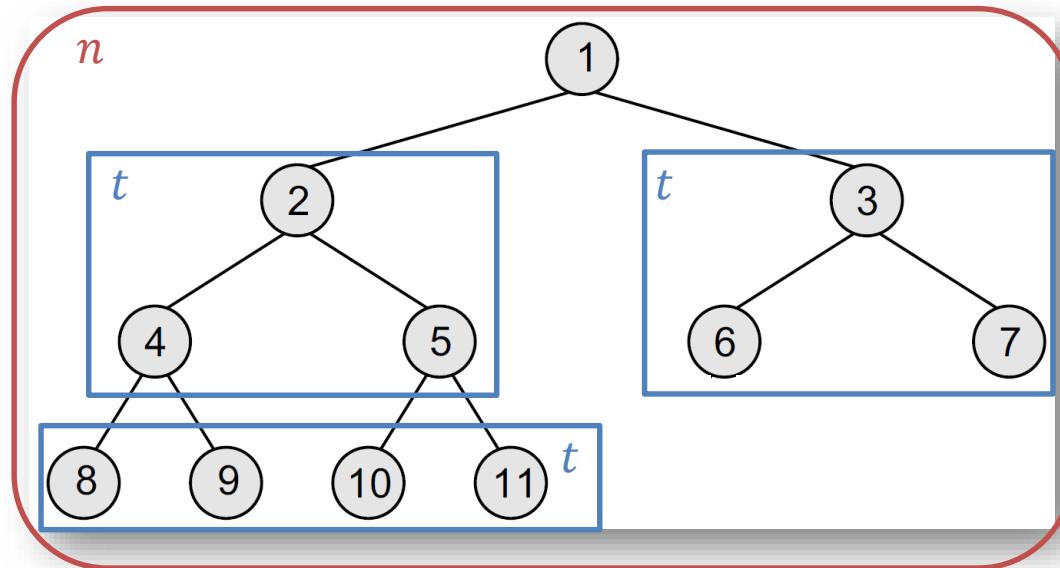
Example



Max-Heapify..

- Analyze the MAX-HEAPIFY procedure
 - The running time of MAX-HEAPIFY on a subtree of size n , i.e., $T(n)$, rooted at a given node i is $\Theta(1) + T\left(\frac{2n}{3}\right)$
 - To fix up the relationships among the elements $A[i]$, $A[LEFT(i)]$ and $A[RIGHT(i)]$
 - To do recursive calls on the subtrees
 - By the master theorem, $T(n) \leq \Theta(1) + T\left(\frac{2n}{3}\right) = O(\log_2 n)$
 - We can characterize the running time of MAX-HEAPIFY on a node of height h as $O(h)$

Appendix



$$n \approx 3t$$

The children's subtrees each have size **at most** $= 2t = \frac{2n}{3}$

Build-Max-Heap.

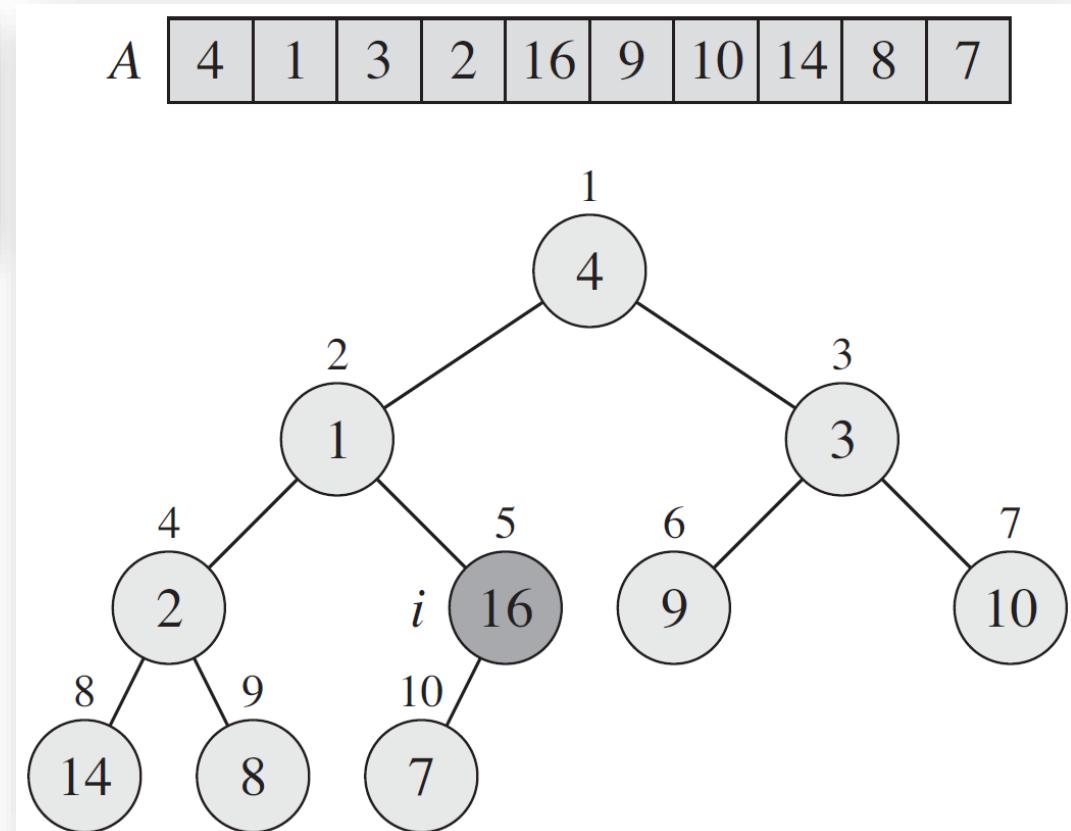
- We can use the procedure MAX-HEAPIFY in a **bottom-up** manner to convert a tree into a max-heap

BUILD-MAX-HEAP(A)

```

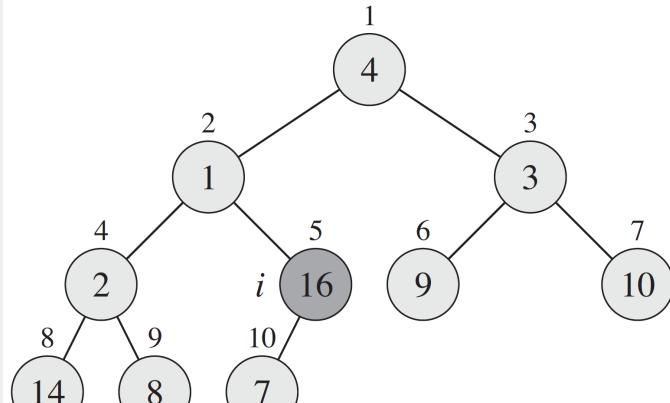
1  A.heap-size = A.length
2  for i =  $\lfloor A.length/2 \rfloor$  downto 1
3      MAX-HEAPIFY(A, i)

```

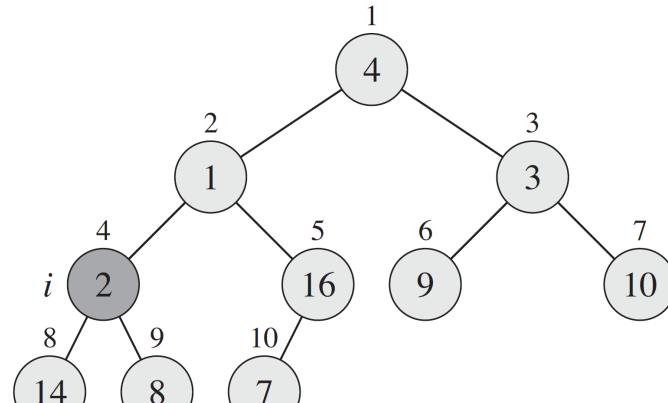


Example.

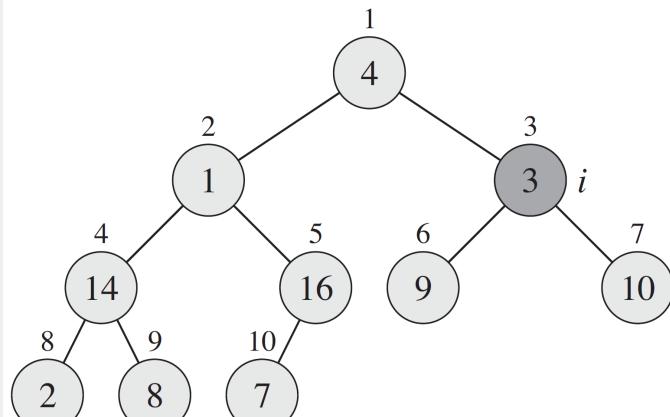
A	4	1	3	2	16	9	10	14	8	7
-----	---	---	---	---	----	---	----	----	---	---



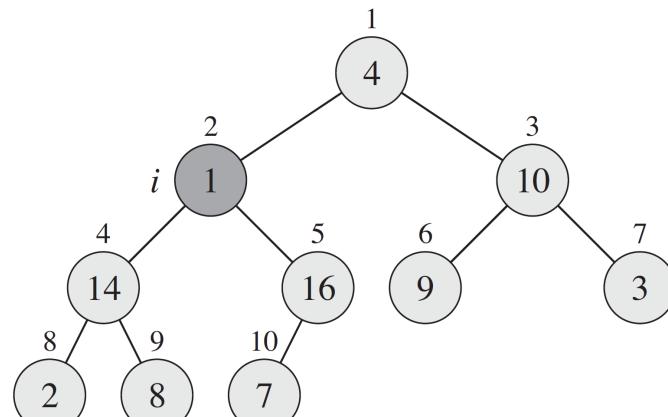
(a)



(b)



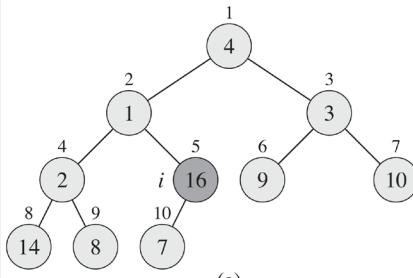
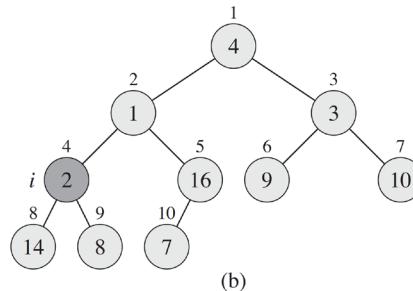
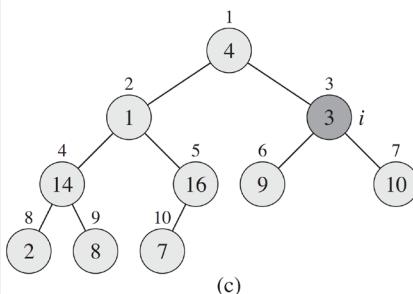
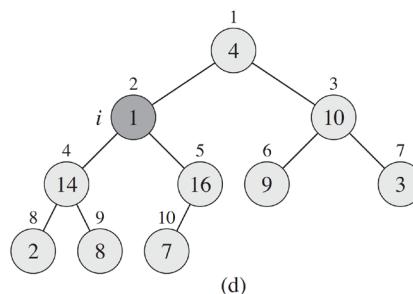
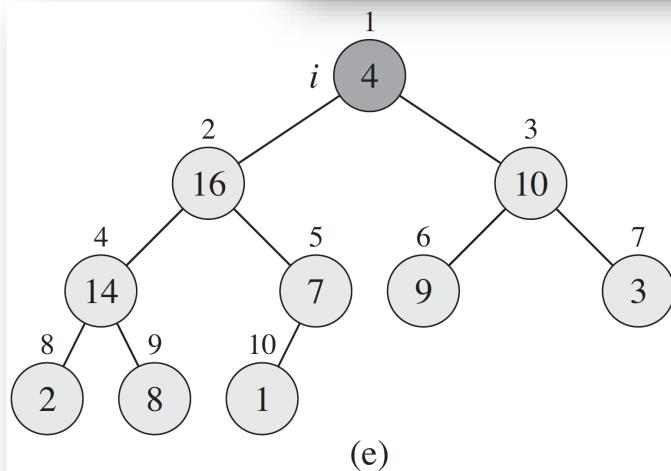
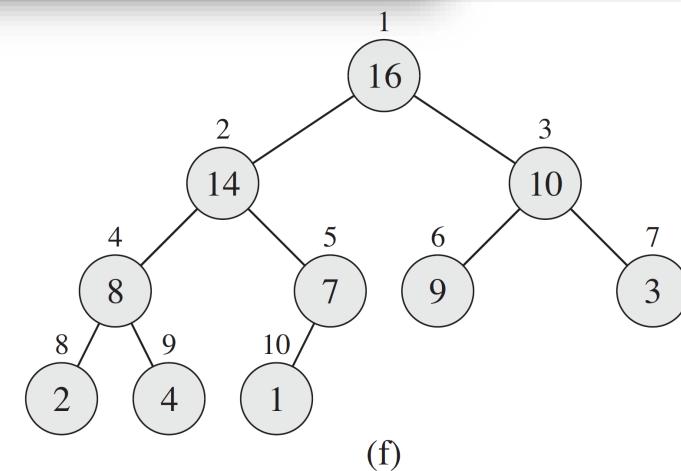
(c)



(d)

Example..

A [4 | 1 | 3 | 2 | 16 | 9 | 10 | 14 | 8 | 7]



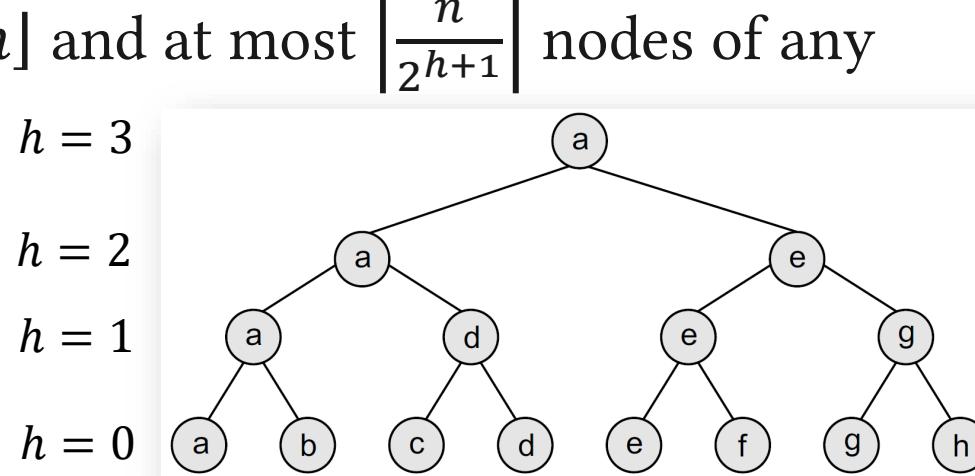
Build-Max-Heap..

- We can compute a simple upper bound on the running time of BUILD-MAX-HEAP
 - Each call to MAX-HEAPIFY costs $O(\log_2 n)$ time
 - BUILD-MAX-HEAP makes $O(n)$ such calls
 - Thus, the running time is $O(n \log_2 n)$
 - This upper bound, though correct, is not asymptotically tight!
- A tighter analysis relies on the properties that an n -element heap has height $\lfloor \log_2 n \rfloor$ and at most $\left\lceil \frac{n}{2^{h+1}} \right\rceil$ nodes of any height h

$$n = 15$$

$$\text{height} = \lfloor \log_2 15 \rfloor = 3$$

$$h = 1, |\text{node}_{h=1}| = \left\lceil \frac{15}{2^2} \right\rceil = 4$$

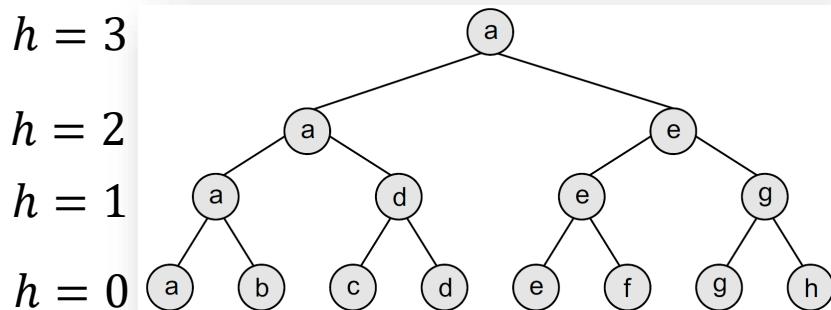


Build-Max-Heap...

- To put everything together
 - The time required by MAX-HEAPIFY when called on a node of height h is $O(h)$
 - Thus, the total cost of BUILD-MAX-HEAP as being bounded by

$$\begin{aligned}
 \sum_{h=0}^{\lfloor \log_2 n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil O(h) &= O\left(\sum_{h=0}^{\lfloor \log_2 n \rfloor} \left\lceil \frac{n}{2^{h+1}} \right\rceil h \right) = O\left(\sum_{h=0}^{\lfloor \log_2 n \rfloor} \frac{nh}{2^h} \right) = O\left(n \sum_{h=0}^{\lfloor \log_2 n \rfloor} h \left(\frac{1}{2}\right)^h \right) \\
 &= O\left(n \sum_{h=0}^{\infty} h \left(\frac{1}{2}\right)^h \right) = O\left(n \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} \right) = O(2n) = O(n)
 \end{aligned}$$

- A max-heap can be built from an unordered array in **linear time**



$$\begin{aligned}
 \sum_{k=0}^{\infty} x^k &= \frac{1}{1-x} = f(x) \\
 f'(x) &= \sum_{k=0}^{\infty} kx^{k-1} = \frac{1}{(1-x)^2} \\
 x \sum_{k=0}^{\infty} kx^{k-1} &= \sum_{k=0}^{\infty} kx^k = \frac{x}{(1-x)^2}
 \end{aligned}$$

HeapSort

- The heapsort algorithm starts by using BUILD-MAX-HEAP to build a max-heap on the input array A

```
HEAPSORT( $A$ )
```

```
1  BUILD-MAX-HEAP( $A$ )
2  for  $i = A.length$  downto 2
3      exchange  $A[1]$  with  $A[i]$ 
4       $A.heap-size = A.heap-size - 1$ 
5      MAX-HEAPIFY( $A, 1$ )
```

- The HEAPSORT procedure takes time $O(n \log_2 n)$
 - BUILD-MAXHEAP takes time $O(n)$
 - Each of the $n - 1$ calls to MAX-HEAPIFY takes time $O(\log_2 n)$
 - $O(n) + (n - 1) \times O(\log_2 n) \leq O(n \log_2 n)$

Questions?

kychen@mail.ntust.edu.tw