Heap Sort

Kuan-Yu Chen ([t % %)

2019/03/20 @ TR-310-1, NTUST

Review

« Maximum-subarray Problem
— The brute-force solution takes ((n?) time
— A transformation approach takes ©(n?) time

— The divide-and-conquer method takes ®(nlog, n) time

« Faster than the brute-force method

« Matrix Multiplication
— The brute-force solution takes ®(n>) time
— The divide-and-conquer method takes ©(n?®) time

~ Strassen’s method takes ©(n'°82 7) time

Binary Heap

« A binary heap is a complete binary tree in which every node
satisfies the heap property

— Min Heap
If Bis achild of A,then key(B) = key(A)
— Max Heap

If B is achild of A,then key(A) = key(B)

Min heap Max heap

Binary Heap

 Given the index i of a node, we can easily compute the indices

of its parent, left child, and right child

— Take max-heap for example

 For a node in the max-heap with index i
o Its parent is E‘

o Its left child is 2i
o Itsright childis 2i + 1

1 2 3 4 5 6 7 8 9 10
N N
16(14(101 8 |79 (3 (2|4 |1 ‘

Heap - Insertion

 Inserting a new value into the heap is done in the following
two steps:

— Consider a max heap H with n elements
1. Add the new value at the bottom of H

2. Let the new value rise to its appropriate place in H

Example

« Consider a max heap and insert 99 in it

(59
@) (3)
@) @) (1 @

(59) D (54) (99
O @ G ORECD DR
@) () (e @) @9 @) (8 @) @9 @ (8 @ @9 @ @ @

1) @9 () @ 1) @ () @
6

Heap — Deletion

« An element is always deleted from the root of the heap

« Consider a max heap H having n elements, deleting an
element from the heap is done in the following three steps:

1.
2.
3.

Replace the root node’s value with the last node’s value
Delete the last node

Sink down the new root node’s value so that H satisfies the
heap property

Example.

« Delete the root node’s value from a given max heap H

Example..

« Delete the root node’s value from a given max heap H
Step 1) Step 2)

(Since 11 is less than 45,
interchange the values)

Step 3) Step 4)

(Since 11 is less than 29,
interchange the values)

Max-Heapify.

 In order to maintain the max-heap property, we call the
procedure MAX-HEAPIFY

— Its inputs are an array A and an index [into the array
— The node A[i] has two children LEFT (i) and RIGHT (i)

— If A[i] is smaller than its children, the procedure can make it
correct

MAX-HEAPIFY (A, 1)

1 [= LEFT(Q)

2 r = RIGHT()

3 if] < A.heap-size and A[l] > Ali]

4 largest = [

5 else largest = i

6 ifr < A.heap-size and A[r] > Allargest]
7 largest = r

8 if largest # i

9 exchange A[i] with A[largest]
10 MAX-HEAPIFY (A, largest)

Example

11

Max-Heapify..

Analyze the MAX-HEAPIFY procedure
— The running time of MAX-HEAPIFY on a subtree of size n, i.e.,
T(n), rooted at a given node i is ©(1) + T (2?71)

o To fix up the relationships among the elements A[i], A[LEFT (i)]
and A[RIGHT (i)]

« To do recursive calls on the subtrees

— By the master theorem, T(n) < 0(1) + T (%n) = 0(log, n)

- We can characterize the running time of MAX-HEAPIFY on a node
of height h as O(h)

12

Appendix

2n
The children’s subtrees each have size at most = 2t = £

13

Build-Max-Heap.

« We can use the procedure MAX-HEAPIFY in a bottom-up
manner to convert a tree into a max-heap

BUILD-MAX-HEAP(A)

1

2 fori = |A.length/2| downto 1

3

A.heap-size = A.length

MAX-HEAPIFY (A, i)

A

4

1

3

2

10

14

14

Example.

15

Example..

Ala]1]3]2]16]9]10]14]8]7]

16

Build-Max-Heap..

« We can compute a simple upper bound on the running time
of BUILD-MAX-HEAP

— Each call to MAX-HEAPIFY costs O(log, n) time

— BUILD-MAX-HEAP makes O(n) such calls

— Thus, the running time is O(nlog, n)

— This upper bound, though correct, is not asymptotically tight!

o A tighter analysis relies on the properties that an n-element
n
2h+1

} nodes of any

heap has height |log, n| and at most [

height h
n =15
height = |log, 15] = 3

15
h =1, |nodey-1| = 22| = 4

Build-Max-Heap...

« To put everything together
— The time required by MAX-HEAPIFY when called on a node of
height h is O(h)
— Thus, the total cost of BUILD-MAX-HEAP as being bounded by

llog, n] n llog, n| n llog, n| " llog, n| 1 h
> fmlow =0 > [mln)=o(Y m)=o(n > (3
h=0 h=0 h=0

h=0

ofe3 h(;)h)_()(n(l %%)2>_0<2n)_0@

« A max-heap can be built from an unordered array in linear
time 1

HeapSort

« The heapsort algorithm starts by using BUILD-MAX-HEAP to
build a max-heap on the input array A
HEAPSORT(A)

1 BUILD-MAX-HEAP(A)
2 fori = A.length downto 2

3 exchange A[1] with A[i]
4 A.heap-size = A.heap-size — 1
5 MAX-HEAPIFY (A, 1)

— The HEAPSORT procedure takes time O(nlog, n)
« BUILD-MAXHEAP takes time O(n)
« Each of the n — 1 calls to MAX-HEAPIFY takes time O(log, n)
e O(n)+ (n—1)x0og,n) <0(nlog, n)

19

Questions?

kychen@mail.ntust.edu.tw

20

	Heap Sort
	Review
	Binary Heap
	Binary Heap
	Heap – Insertion
	Example
	Heap – Deletion
	Example.
	Example..
	Max-Heapify.
	Example
	Max-Heapify..
	Appendix
	Build-Max-Heap.
	Example.
	Example..
	Build-Max-Heap..
	Build-Max-Heap…
	HeapSort
	Questions?

